Paraxial Light Beams with Angular Momentum
Authors: , ,
Genre: Science
Publisher: Nova Science Pub Incorporated
Publication Year: 2022
Length: 112
ASIN: 1604561149
ISBN: 9781604561142

Paraxial Light Beams with Angular Momentum

Fundamental and applied concepts concerning the ability of light beams to carry a certain mechanical angular momentum (AM) with respect to the propagation axis are reviewed and discussed in this book. In paraxial beams, the total beam AM can be represented as a sum of the spin (SAM) and orbital (OAM) angular momentums. SAM is an attribute of beams with elliptic (circular) polarisation and is related to the spin of photons. OAM is conditioned by the macroscopic transverse energy circulation and does not depend on the beam polarisation state.

Buy now!
About the Book

Fundamental and applied concepts concerning the ability of light beams to carry a certain mechanical angular momentum (AM) with respect to the propagation axis are reviewed and discussed in this book. In paraxial beams, the total beam AM can be represented as a sum of the spin (SAM) and orbital (OAM) angular momentums. SAM is an attribute of beams with elliptic (circular) polarisation and is related to the spin of photons. OAM is conditioned by the macroscopic transverse energy circulation and does not depend on the beam polarisation state. In turn, the OAM can be divided in two components which reflect different forms of this energy circulation. Important class of beams with OAM, are vortex beams with helical geometric structure. They constitute a full set of azimuthal harmonics characterised by integer index l each possessing AM l per photon. Arbitrary paraxial beam can be represented as a superposition of helical beams with different l. Models of helical beams and methods of their practical generation are discussed. Transverse energy flows in light beams can be described on the basis of a mechanical model assimilating them to fluid bodies; remarkably, in a helical beam the transverse flow distribution exactly corresponds to the laws of the vortex behaviour in other fields of physics (fluid dynamics, electricity). Experiments on transmission of the beam AM to other bodies (optical elements and to suspended microparticles) are discussed. Research prospects and ways of practical utilisation of optical beams with AM are discussed.

Sign up for Updates
Look Inside
Disclosure of Material Connection: Some of the links in the page above are "affiliate links." This means if you click on the link and purchase the item, I will receive an affiliate commission. I am disclosing this in accordance with the Federal Trade Commission's 16 CFR, Part 255: "Guides Concerning the Use of Endorsements and Testimonials in Advertising."